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Fig. 5, Frequency-dependent characteristics of normalized Iongltudmal cur-

rent dlstrrbutlons (c = 8, w/h = 1). --- Green’s function technique [11];

— present method.

The shifts of the current distributions with respect to frequen-

cies for h /xO <0.2 shown in Figs. 4 and 5 are similar to those

revealed by Shih et al. [13], although for cases where c and w/h

have values different from those of the present article.

IV. CONCLUSION

The spectral-domain approach has been used to obtain the

frequency-dependent characteristics of current distributions and

the effective permittivities of open microstrip lines. The func-

tions U2H(zX/W) ancl T2(H-1)(2x/w)/~– (2x/w)z have been
adopted as basis functions; T.(x) and U.(x) are Chebyshev

polynomials of the first and second kinds, respectively. Numeri-

cal results reported in this article have been compared with other

available data.

REFERENCES

[1] E. J. Denlinger, “A frequency dependent solution for microstrip transmis-

slOn lines,” IEEE Trans. Mzcrowaue Theo~ Tech., vol. MT”P19, pp.

30–39. Jan. 1971.

[2] Y. Fu~iki, Y. Hayashi, and M Suzuki, “Anal ysis of strip transmission

[3]

[4]

[5]

[6]

[7]

[8]

[9]

lines by Iteration method,” J. Inst. Electron. Commun. Eng. Japan, vol.

55-B, pp. 212-219, May 1972 (in Japanese): Electron Commun Japan,

vol. 55, pp. 74–80, May 1972.

G. Kowalskl and R Pregla, “Dispersion characteristics of single aud

coupled microstrips,” Arch. Elek, Ubertragung., vol 26, pp. 276-280,

June 1972.

T. Itoh and R. M1ttra, “Spectral-domain approach for calculating the

dispersion characteristics of nricrostrip lines,” IEEE Tram Microwave

Theory Tech., vol. MT’1-21, pp. 496-499, July 1973.

E, F, Kuester and D. C. Chang, “An apprsisal of methods for computa-

tion of the dispersion characteristics of open microstrip.” IEEE Trans

Mlcrowaue. Theory Tech., vol. MITG27, pp. 691-694, July 1979.

T. FLtazawa and Y. Hayashl, “Propagation characteristics of striphnes

with multilayered anisotropic media,” IEEE Trans. Microwave Theoy

Tec}z., vol. MT’P31, pp. 429-433, June 1983.

N. G. Alexopoulos, “ Integrated-cmcuit structures on anisotropic sub-

strates,” IEEE Trans. Microwave Theory Tech.. vol. MTl-33, pp. 847– 881.

Oct. 1985

M. Kobayashi and F. Ando, “ Dmpersion characteristics of open mi-

crostrip lines.” IEEE Trans. Microwaue Theorv Tech.. VO1. MIT-35. PP.

101–105, Feb 1987.

B. M. Sherril and N. G. Alexopoulos, “The method of lines applied to a

finline/strip configuration on an auisotroplc substrates;’ IEEE Trans

Mzcrowaue Theory Tech , vol. MTT-35, pp. 568-574, June 1987

[10]

[11]

[q

[13]

[14]

[15]

B. E, Kretch and R. E. Colhn, “ Microstrlp dispersion mcludmg

anisotropic substrates,” IEEE Trans. Mox)wuue Theory Zdz , vol MTT-

35. pp. 710-718, Aug. 1987.

M. Kobayashr, “Longitudinal and transverse current dkstr~butlons on

micros tnplines and their closed-form expressi on,” IEEE Tram Mi-

crowac,e Theory Tech , vol. MT”I-33, pp 784– 788, Sept. 1985

M. Kobavasbi and H. Momol, “ Longltudmal and transverse current

distributions on coupled micristnp lines,” IEEE Trans. Mjcrowaue Theo<v

Tech., vol 36, pp. 588-593, Mar. 1988.

C. Shlh, R. K Wu, S. K. Jeng, and C. H. Chen, “A full-wave analysm of

microstrlp lines by variational conf ormal mapping technicpe,” IEEE

Tram Microwave Theoy Tech , vol. 36, pp. 576-581, Mar. 1988.

N. Fach& aud D. D Zutter, “Rigorous full-wave space-d omsm solutlon

for dispersive microstrip lines,” IEEE Trans Microwave Theoy Tech.,

VOI. 36, pp. 731–737, Apr. 1988

M. Kobayaslu, “Analysis of the mlcrostrip and the electrooptlc hght

modulator,” IEEE Trans. Microwuue Theory Ted., vol. MT”F26, m. . .
119–126, Feb. 1978.

Shift of the Complex Resonance Frequency c~fa

Dielectric-Loaded Cavity Produced

by Small Sample Insertion Holes

SYLVAIN GAUTHIER, LOUIS MARCHILDON
AND C’EVDET AKYEL

Abstract —The presence of small sample insertion holes in a cylindrical

cavity produces a shift in the complex resonance frequency of the cavity. A

mathematical model is proposed to compute the shift when the cavity

oscillates in an axially symmetric TMOWIPrude. The treatment applies to

samples with arbitrary complex permittivity. The model is compared with

other treatments and checked against measured results.

I. INTRODUCTION

Insertion holes in resonant cavities produce changes in both

the real and imaginary parts of the complex resonance frequency,

which may amount to a few percent and are significant in

high-precision measurements. Several attempts have been made

to quantify hole effects. Estin and Bussey [1] and Meyer [2] have

estimated the change in the real part of the resonance frequency

for some simple TMOmP modes. Their main assumptions were

that the field is not perturbed in the main body of the cavity and

that in the tubes it is well represented by the first evanescent TM

mode. More recently, Li and Bosisio [3] have significantly im-

proved the treatment by allowing for a large number of modes in

the tubes. They have obtained correction terms due to insertion

holes for both the real part of the resonance frequency and the

quality factor of the cavity.

The present paper is an attempt to compute the shift of the

complex resonance frequency of a cavity produced by small

sample insertion holes. It was largely inspired by the work of Li

and Bosisio, which it tries to improve in two different ways. First,

we take fully into account the fact that, for lossy samples, the

phasors and the wavenumbers in the tubes are genuinely com-

plex. Second, we carry a larger fraction of the calculations

analytically. The resulting formulas are less susceptible to numer-

ical errors.
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The field distribution in the tubes is obtained in Section II. In

Section III, we derive correction terms to the complex resonance

frequency of the cavity due to the presence of the holes. Finally,

results are checked against experimental measurements and dis-

cussed in Section IV.

II. FIELD DISTRIBUTION

Fig. 1 illustrates a cylindrical cavity enclosed in perfectly

conducting walls. The cavity is symmetrical about the z axis and

the plane z = – h/2. Its main body has radius RN+ ~ and height

h. Two smaller tubelike end pieces have radii Rv. The cavity is

filled with concentric dielectric samples of radii RI, R2, ~. . . RN+ ~

and complex permittivity tl, (2, . . ., c~+ ~. Usually c~+ ~ = CO, the

permittivity of free space. We assume that the samples’ perme-

ability is equal to pO throughout.

In experimental setups, where the cavity is used to make

permittivity measurements, N rarely exceeds 3. Furthermore,

RN << R~+l. This implies that the fields in the tubes decrease

exponentially for all frequencies of interest. The height of the

tubes is much larger than RN and can therefore be taken equal to

infinity.

With no end pieces, the cavity sustains TE and TM modes

whose mathematical expression is known exactly [4]. We assume

the cavity has been so excited that the electromagnetic field in its

main body is well represented by a single TMO,.P mode. By

continuity, the fields in the end pieces will also be transverse

magnetic and have cylindncaf symmetry. In the upper end piece,

the most general exponentially decreasing form for these fields is

given by

E== f ,4vZO(kUr) exp(-yUz) (1)
~=1

% = E4fz1(%7)exp(-w) (3)
.=l v

E+= HZ= H,=O. (4)

Each Av is a constant. The parameters kv and yz satisfy the

relation

k: = YU2+ U2POC (5)

where co is the angular frequency of the cavity. The parameter yV

does not vary from sample to sample but, in general, the parame-

ter k, does through its dependence on c. The function ZO ( Zl) is

a linear combination of Bessel functions JO and YO ( JI and YI ) of

the same argument. We have – ZI = Z:. For r < RI, Z. can be

set equal to Jo. Where two samples meet, ZO and (c/k, ) Z1 are

continuous. The circular walls make ZO( ku RN ) vanish.

We shall now make an important approximation. We assume

that the radius of the tubes (RN) is much smaller than the linear

dimensions of the main body of the cavity (RN+ ~ and h). We

also assume that the indices p and m of the TMO~P mode are

not too large. Since kuR~ is a zero of ZO, Iku RN I >1, so that ,kj

is at least of order (RN) – 2. On the other hand, u2pOc~+ ~ is of

order (RN+, )-2 (or h-2). From (5), we thus make the approxi-

mation yu = kv, for every U, in (l)-(3).

The coefficients ,4V in (l)–(3) are still not determined. Suppose

that a component of the field (say E:) is known on the surface

RI ‘ ‘;1 I

r

I

R2 !
I
I

‘N;
I

I

‘N+l+’

Fig. 1. The cylindrical cavity with concentric dielectric samples and thin,

infinitely long insertion tubes.

z = (), that is, on the interface between the tube and the cavity.

The series in (1) is a Fourier–Bessel series and hence the coeffi-

cients Au can be expressed as [5], [6]

Knowledge of E,(z = O) thus completely determines all the Au’s,

As an illustration, we will assume that E= is not perturbed, on

the plane z = O, by the presence of the protruding end piece.

(This is equivalent to the assumption, made in [3], that Ho is not

perturbed.) In the plane z = O, EZ is given for r < RN by EZ

(z = O) = A, where A is a constant and terms of order

fR~/c~ + ~R; + ~ have been neglected. The coefficients Au can

now be determined from (6). We easily get

‘ervRN-%(k. RN)
AD= (7)

kufR%c[zo(kvr)]2dr
o

The integral in the denominator can be computed exactly from

well-known properties of Bessel functions [5], [6]. The result is

N–1 R2

E –[(

1
—

1

—-: [ciZ1(kuR,)]2
i=l 2’ (,+1 ,

1+(c,+l- c,)[Zo(kvR1)]2 (8)

To interpret (8), recall from Fig. 1 that Ci is the permittivity in

the region R,_ ~ < r < R,. In the product e,Zl(kp R, ), the limit

r + R, should be taken from the region of permittivity c,.
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III. COMPLEX RESONANCE FREQUENCY

The complex resonance frequency u of any cavity can be

written as

o=~,(l+j/2Q) (9)

where u, is the real part of u and Q is the quality factor. For the

ideal cavity, the resonance frequency co of each TMOMP mode is

known exactly. For the cavity with thin, infinitely long tubes,

depicted in Fig. 1, u is shifted by a small quantity 8ti. Assuming

that the change in the fields is negligible in the main body of the

cavity, we can use perturbation methods [4] and compute 8U as

86) 8(+ 1

()

—= —+;6’ —
w Wr Q

1
.—

w, m
c*E. E* dV.

‘tube

(lo)

Here the integral is on one tube only and W, is the total energy in

the cavity.

We now substitute (1) and (2) (with y. = kv ) in the numerator

of (10). The integral can be evaluated exactly through the use of

well-known properties of Bessel functions [5], [6]. The result can

be written as

where

(11)

[zo(kpR,)]*[c,z,(k,R,)]. (12)

This expression is indeterminate if the permittivity is everywhere

real. In that case we find that Mpu = O if v # p and

This integral is calculated in (8).

(13)

IV. RESULTS AND DISCUSSION

When a resonant cavity is used to make complex permittivity

measurements, the complex frequency differences are the param-

eters whose accurate evaluation is particularly important. A

cavity with insertion holes, such as the one depicted in Fig. 1,

produces a spurious frequency shift both when empty and when

containing dielectric material. It is the difference in these shifts

that is especially relevant to permittivity measurements.

To illustrate hole effects, a configuration with three distinct

regions will be considered. A sample of complex perrnittivity c1

and radius RI is contained in a capillary tube of real perrnittivity

[z = 4.75 (a typical value for pyrex glass) and radius R2. The
radius of the insertion holes is R ~, and the permittivity outside

the capillary is equal to CO. Let (8a),cuP,. be the complex

frequency shift due to the holes, which is calculated by (11), for

the configuration just described. Let (8u) ,Ubebe the shift for the

configuration where only the capillary tube is present (that is, the

sample is removed). Finally, let Au be the difference between the

resonant frequencies of an ideal cavity with and without sample.

M

..oL_-_-__.jo
0.2 0.4 0.6 0.8 .

R,/R2
Fig. 2, The coeffment M versus R1/R2 for c1 = 9 and c1 = 81. ( c1 = 4,75,

R ~ = R ~ = 1 mm) Broken lines ref. [3]; solid hnes: present analysis

TABLE I

VALUES OF c“ FOR SEVERAL MATERIALS, CORRSCTED AS IN [3],

[7] AND HEREIN (l?3 =1 mm, ~ = 2.23 GHz, T= 22°C)

Material
RI

R2 [“mc (“cop (“cor Reference Reference

(m] (m) [3] [7] (here) value

Fiethanol ,304 !749 1344 i3,1 130 125-135 [8]

l-Propanol 305 755 366 3.63 358 1,45-2.81 [9]

I%uthanol ~691 ,959 20? 196 1.99 087-1.64 [9]

Water ,304 ,700 880 862’ b, 4i

.43? 708 819 8,03 773
8-iL5 19,10,4]

We define

h Re( 8ti)tube-Re( 8@),~~P]c
M=F

3 Re(A~) “

M represents the relative error on the real part of

permittivitv c, produced by the insertion holes. It

(14)

the sample’s

is plotted in

Fig. 2 for ‘two ~alues of c;, together with similar cu~es taken

from [3]. We believe the solid lines are smoother because the

more complete analytical treatment has eliminated numerical

instabilities.

Corrections to the imaginary part of the permittivit!~ are illus-

trated in Table I. Experimental results presented m [7] are

analyzed according to [3] and to the methods presented here, and

compared with reference values.

Although our computation of the field distribution in the

insertion tubes rests on the assumption that E: is not changed at

the interface z = O, it can be adapted to other choices of E:

(z= O). The coefficients Au are’ then given by (6). In fact, the
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value of the fields in the vicinity of the insertion tubes, and in [4]

particular of E, at the interface, can be determined by a com-
[5]

puter simulation of the field distribution in and near the tube.

Work in that direction is in progress. [6]

[7]
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