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Fig. 5. Frequency-dependent characteristics of normalized longitudinal cur-
rent distributions (¢ =8, w/h=1). ——~ Green’s function technique [11};
— present method.

The shifts of the current distributions with respect to frequen-
cies for /Ay < 0.2 shown in Figs. 4 and 5 are similar to those
revealed by Shih ez al. [13], although for cases where € and w/h
have values different from those of the present article.

IV. CoNCLUSION

The spectral-domain approach has been used to obtain the
frequency-dependent characteristics of current distributions and
the effective permittivities of open microstrip lines. The func-

tions U,,(2x/w) and sz_l)(2x/w)/\/1_—(2x/w)2 have been
adopted as basis functions; 7,(x) and U,(x) are Chebyshev
polynomials of the first and second kinds, respectively. Numeri-
cal results reported in this article have been compared with other
available data.
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Shift of the Complex Resonance Frequency of a
Dielectric-Loaded Cavity Produced
by Small Sample Insertion Holes

SYLVAIN GAUTHIER, LOUIS MARCHILDON
AND CEVDET AKYEL

Abstract — The presence of small sample insertion holes in a cylindrical
cavity produces a shift in the complex resonance frequency of the cavity. A
mathematical mode! is proposed to compute the shift when the cavity
oscillates in an axially symmetric TM,,,,,, mode. The treatment applies to
samples with arbitrary complex permittivity. The model is compared with
other treatments and checked against measured results.

I. INTRODUCTION

Insertion holes in resonant cavities produce changes in both
the real and imaginary parts of the complex resonance frequency,
which may amount to a few percent and are significant in
high-precision measurements. Several attempts have been made
to quantify hole effects. Estin and Bussey [1] and Meyer (2] have
estimated the change in the real part of the resonance frequency
for some simple TM,,,, modes. Their main assumptions were
that the field is not perturbed in the main body of the cavity and
that in the tubes it is well represented by the first evanescent TM
mode. More recently, Li and Bosisio [3] have significantly im-
proved the treatment by allowing for a large number of modes in
the tubes. They have obtained correction terms due to insertion
holes for both the real part of the resonance frequency and the
quality factor of the cavity.

The present paper is an attempt to compute the shift of the
complex resonance frequency of a cavity produced by small
sample insertion holes. It was largely inspired by the work of Li
and Bosisio, which it tries to improve in two different ways. First,
we take fully into account the fact that, for lossy samples, the
phasors and the wavenumbers in the tubes are genuinely com-
plex. Second, we carry a larger fraction of the calculations
analytically. The resulting formulas are less susceptible to numer-
ical errors.
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The field distribution in the tubes is obtained in Section II. In
Section III, we derive correction térms to the complex resonance
frequency of the cavity due to the presence of the holes. Finally,
results are checked against experimental measurements and dis-
cussed in Section IV.

II. FIeLD DISTRIBUTION

Fig. 1 illustrates a cylindrical cavity enclosed in perfectly
conducting walls. The cavity is symmetrical about the z axis and
the plane z = — & /2. Its main body has radius R, and height
h. Two smaller tubelike end pieces have radii R,. The cavity is
filled with concentric dielectric samples of radii R;, R,," -+, Ry 4
and complex permittivity €, €5, -, €y, ;. Usually €y, =€, the
permittivity of free space. We assume that the samples’ perme-
ability is equal to p, throughout.

In experimental setups, where the cavity is used to make
permittivity measurements, N rarely exceeds 3. Furthermore,
R, < Ry .,. This implies that the fields in the tubes decrease
exponentially for all frequencies of interest. The height of the
tubes is much larger than R, and can therefore be taken equal to
infinity.

With no end pieces, the cavity sustains TE and TM modes
whose mathematical expression is known exactly [4]. We assume
the cavity has been so excited that the electromagnetic field in its
main body is well represented by a single TM,,,,, mode. By
continuity, the fields in the end pieces will also be transverse
magnetic and have cylindrical symmetry. In the upper end piece,
the most general exponentially decreasing form for these fields is
given by

E. =) A,Zy(k,r)exp(—v,2) (1)
y=1
.

B =Y 42 7i(kr)exp(~.2) 2
v=1 v .
x Jwe

Hy= ) A= Z(kyr) exp(—y,2) (3)
r=1 4

E,=H,=H =0. 4
Each A4, is a constant. The parameters &k, and v, satisfy the
relation

ki =+ opoe (5)
where w is the angular frequency of the cavity. The parameter v,
does not vary from sample to sample but, in general, the parame-
ter k, does through its dependence on e. The function Z, (Z,) is
a linear combination of Bessel functions J; and ¥, (J; and 1;) of
the same argument. We have — Z, = Z/. For r < R,, Z, can be
set equal to J,. Where two samples meet, Z, and (¢/k,)Z,; are
continuous. The circular walls make Z,(k,R,) vanish.

We shall now make an important approximation. We assume
that the radius of the tubes (R,) is much smaller than the linear
dimensions of the main body of the cavity (R,,, and k). We
also assume that the indices p and m of the TM,,, mode are
not too large. Since k, R, is a zero of Z,, |k, Ry| 21, so that k?
is at least of order (R,) 2. On the other hand, w’uy€y., is of
order (Ry, )" 2 (or h~2). From (5), we thus make the approxi-
mation y, = k,, for every », in (1)-(3).

The coefficients 4, in (1)-(3) are still not determined. Suppose
that a component of the field (say E,) is known on the surface
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Fig. 1. The cylindrical cavity with concentric dielectric samples and thin,

infinitely long insertion tubes.

z =0, that is, on the interface between the tube and the cavity.
The series in (1) is a Fourier—Bessel series and hence the coeffi-
cients A4, can be expressed as [5], [6]

fRNreZO(er) E(z=0)dr
4,==

: (6)
fQRNreZO(kPr) Zy(k,r) dr

Knowledge of E.(z=0) thus completely determines all the 4,’s.

As an illustration, we will assume that E, is not perturbed, on
the plane z=0, by the presence of the protruding end piece.
(This is equivalent to the assumption, made in [3], that H, is not
perturbed.) In the plane z=0, E, is given for » < Ry by E,
(z=0y=A, where A is a constant and terms of order
€R% /ey 1Ry .1 have been neglected. The coefficients 4, can
now be determined from (6). We easily get

AeyRyZ)( k,Ry)

kV/RNre[Zo(k,,r)]zdr
0

(7

The integral in the denominator can be computed exactly from
well-known properties of Bessel functions [5], [6]. The result is

-/;RNre[ Zo(k,,r)]2 dr

ey R2
= N2 N[Zl(k»RN)]z
N-1 R%

i=1 2

(e~ Ci)[ZO(kVRi)]z]'

11 ,
(('4—1 _:)[eizl(kvRi)]

i

(®)

To interpret (8), recall from Fig. 1 that ¢, is the permittivity in
the region R, ; <r<R,. In the product €7 (k,R,), the limit
r = R; should be taken from the region of permittivity ;.
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III. CoMpPLEX RESONANCE FREQUENCY

The complex resonance frequency w of any cavity can be
“written as

w=w,(1+j/20) 9)

where w, is the real part of w and Q is the quality factor. For the
ideal cavity, the resonance frequency w of each TM,,, , mode is
known exactly. For the cavity with thin, infinitely long tubes,
depicted in Fig. 1, w is shifted by a small quantity §w. Assuming
that the change in the fields is negligible in the main body of the
cavity, we can use perturbation methods [4] and compute dw as

Sw Sw, (1)
_ = +_8 —
w w, 2 10

'

-

Vtube

*E-E*dV.

(10)

Here the integral is on one tube only and W, is the total energy in
the cavity.

We now substitute (1) and (2) (with vy, = &,) in the numerator
of (10). The integral can be evaluated exactly through the use of
well-known properties of Bessel functions [5], [6]. The result can
be written as

(1)

where

M=
[l (k:)z—(k,,)z o

[ 2z(k,R)] TeZi(,R)]. (12)

This expression is indeterminate if the permittivity is everywhere
real. In that case we find that M,, =0 if v #p and

Ry

= re[ZO(k,,r)]zdr.
k, /o

(13)

This integral is calculated in (8).

IV. RESULTS AND DISCUSSION

When a resonant cavity is used to make complex permittivity
measurements, the complex frequency differences are the param-
eters whose accurate evaluation is particularly important. A
cavity with insertion holes, such as the one depicted in Fig. 1,
produces a spurious frequency shift both when empty and when
containing dielectric material. It is the difference in these shifts
that is especially relevant to permittivity measurements.

To illustrate hole effects, a configuration with three distinct
regions will be considered. A sample of complex permittivity €,
and radius R, is contained in a capillary tube of real permittivity
€, =4.75 (a typical value for Pyrex glass) and radius R,. The
radius of the insertion holes is R, and the permittivity outside
the capillary is equal to €. Let (8w),,p,. be the complex
frequency shift due to the holes, which is calculated by (11), for
the configuration just described. Let (8w),,. be the shift for the
configuration where only the capillary tube is present (that is, the
sample is removed). Finally, let Aw be the difference between the
resonant frequencies of an ideal cavity with and without sample.

3.04
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Fig. 2. The coefficient M versus R, /R, for ¢ =9 and ¢ =81 (e, =475,
R, = R3; =1 mm) Broken lines ref. [3]; solid lines: present analysis

TABLE [
VALUES OF €' FOR SEVERAL MATERIALS, CORRECTED AS IN {3],
[7] AND HEREIN (R4 =1 mm, f =223 GHz, T=22°C)

Material R1 R2 e " ¢" Reference Reference

une cor cor

(mm)  (mm) {3 {7 (here) value
Methanol L304 L THS 134 13,1 13.0 12.5-13.5 (8]
{-Propanol .305 .7%6 3.66  3.63 358 1.45-2.84 (9
{-Buthanol .691 .959 2.02  1.96 1,99 0.87-1.64 9]
Water 304,700 8,80 8.6 8.4

-12. 9,10, 4
432 .798 8.19  8.03 .73 B-125 19,10, 4]
We define
h Re(6w)wpe—Re( 8w )sample
M= ( )l b ( )sa pl . (14)

R, Re(Aw)

M represents the relative error on the real part of the sample’s
permittivity ¢, produced by the insertion holes. It is plotted in
Fig. 2 for two values of ¢, together with similar curves taken
from [3]. We believe the solid lines are smoother because the
more complete analytical treatment has eliminated numerical
instabilities.

Corrections to the imaginary part of the permittivity are illus-
trated in Table 1. Experimental results presented in [7] are
analyzed according to [3] and to the methods presented here, and
compared with reference values. ‘

Although our computation of the field distribution in the
insertion tubes rests on the assumption that E. is not changed at
the interface z=0, it can be adapted to other choices of E.
(z =0). The coefficients A, are'then given by (6). In fact, the
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value of the fields in the vicinity of the insertion tubes, and in
particular of E_ at the interface, can be determined by a com-
puter simulation of the field distribution in and near the tube.
Work in that direction is in progress.
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